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as found for the monofunctional salts, i.e., the two heterocyclic 
rings are noninteracting. Characterization of the neutral species 
obtained by reduction of these dications is in progress. 
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Mimicry of metalloprotein active sites lends insight toward 
structure-function relationships in biological systems as well as 
the development of abiotic catalysts. Reaction centers containing 
two or more transition-metal ions are of particular interest in 
studying the cooperative effects of redox-active or Lewis acid sites.2 

In these systems, synthetic macrocyclic ligands offer a convenient 
means of preorganization of ligands for controlling both metal 
ion and auxiliary ligand or substrate binding.3 Dinuclear com­
plexes as mimics of the nickel-containing enzyme urease would 
aid in deciphering the features that give rise to a 1014 rate ac­
celeration in urea hydrolysis.4 Here we report the design, syn­
thesis, and characterization of dicopper(II) and dinickel(II) 
macrocyclic complexes as a first step toward this goal. 

Recent magnetic measurements by Wilcox5 indicate that urease 
has a dinuclear Ni" center with weak antiferromagnetic coupling 
between the two distorted Oh sites due to a bridging ligand and 
also suggest coordination of bridging substrates. A proposed 

(1) (a) State University of New York at Stony Brook, (b) Universite Louis 
Pasteur. 

(2) Ibers, J. A.; Holm, R. H. Science (Washington, D.C.) 1980, 209, 
223-235. 

(3) Lindoy, L. F. The Chemistry of Macrocyclic Ligand Complexes; 
Cambridge University: Cambridge, 1989. 

(4) (a) Andrews, R. K.; Blakeley, R. L.; Zerner, B. In The Bioinorganic 
Chemistry of Nickel; Lancaster, J. R., Jr., Ed.; VCH: New York, 1988; pp 
141-165. (b) Blakeley, R. L.; Treston, A.; Andrews, R. K.; Zerner, B. J. Am. 
Chem. Soc. 1982, 104, 612-614. (c) Dixon, N. E.; Gazzola, C; Blakeley, R. 
L.; Zerner, B. J. Am. Chem. Soc. 1975, 97, 4131-4133. 

(5) Clark, P. A.; Wilcox, D. E. Inorg. Chem. 1989, 28, 1326-1333. 
(6) (a) Dixon, N. E.; Riddles, P. W.; Gazzola, C; Blakeley, R. L.; Zerner, 

B. Can. J. Biochem. 1980, 58, 1335-1344. (b) Blakeley, R. L.; Zerner, B. 
J. MoI. Catal. 1984, 23, 263-292. 

(7) Alternatively, Buchanan et al.! have proposed substrate bridging be­
tween two apical positions in a Ni2 model complex with a Ni-Ni separation 
of 3.42 A. 

(8) Buchanan, R. M.; Mashuta, M. S.; Oberhausen, K. J.; Richardson, J. 
F. J. Am. Chem. Soc. 1989, / / / , 4497-4498. 

mechanism involves binding of both urea and H2O between the 
metal ions, leading to a carbon tetrahedral intermediate with a 
three-atom bridge (0-C-O) spanning the metal centers.6 One 
arrangement of the relevant players would place the nickel ions 
at an internuclear separation of nearly 6 A.7 
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In order to construct a mimic of the urease active site, we sought 
a semirigid macrocyclic framework that would allow coordination 
of two Ni" ions in a nearly octahedral geometry with a three-atom 
separation for a bridging substrate (or intermediate). In this 
strategy, the N-C-N portion of imidazolate served as a mimic 
of the desired O-C-0 spacer. The well-known propensity for 
formation of ̂ -bridged imidazolate complexes of Cu"9 (and more 
rarely Ni11)10 led us to postulate the use of the Cu-Im-Cu (or 
Ni-Im-Ni) moiety in the template synthesis of the macrocyclic 
complex [LCu2(^-Im)](CF3S03)3-H20 (1). To our knowledge, 
this is the first use of a simple dinuclear metal unit as a template 
for macrocyclization. We have termed this reaction a (template)2 

synthesis to reflect the role of imidazolate in first defining the 
metal-metal distance, which subsequently results in organization 
and condensation of the Schiff base macrocycle around the sec­
ondary template,1' according to the following reaction: 

[Cu"-lm-Cu"]3+ + 2 H3aY^N<5YCH3 + 2 f ^ ^ > 1 

O O NH2 NH2 

The synthetic procedure consisted of addition of equimolar 
amounts of Cu(CF3S03)2 and imidazole in CH3OH to an equi­
molar solution of 2,6-diacetylpyridine and w-xylylenediamine in 
CH3OH. After 12 h at room temperature, a green precipitate 
was isolated in 82% yield and characterized.12 Recrystallization 
from propylene carbonate and THF yielded crystals suitable for 
X-ray crystallographic analysis. Substituting nickel in place of 
copper led to the formation of a yellow solid, proposed to be an 
analogous complex, [LNi2(Ai-Im)](N03)3-5H20.13 The usual 
method of synthesis of dinucleating Schiff base macrocycles entails 
the use of a single large metal ion template such as Pb2+, Sr2+, 
Ba2+, or Ag+,14 which, in our system, failed to give soluble non-
polymeric products; the rigidity of the w-xylyl groups is, in fact, 
likely to prevent templation around a single metal ion. Fur­
thermore, it is important to note that Cu2+ or Ni2+ ions in the 
absence of imidazole were ineffective toward macrocyclization.15 
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Figure 1. ORTEP drawing of 1-3THF showing the 50% probability ther­
mal ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond 
distances (angstroms) and angles (degrees) are as follows: Cul—Cu2, 
5.9181 (9)-, CuI-Nl, 2.070 (3); Cul-N2, 1.928 (4); Cul-N3, 2.073 (3); 
Cul-N4, 1.960 (4); CuI-Ol, 2.248 (2); Cu2-N5, 1.945 (3); Cu2-N6, 
2.084 (3); Cu2-N7, 1.929 (4); Cu2-N8, 2.066 (3); Cu2-02, 2.442 (3); 
Cu2-09, 2.724 (4); Nl-Cul-N2, 78.4 (1); Nl-Cul-N3, 156.7 (1); 
Nl-Cul-N4, 101.4 (1); N2-Cul-N3, 78.4 (1); N2-Cul-N4, 165.0 (1); 
N3-Cul-N4, 100.9 (1); Nl-CuI-Ol, 95.9 (1); N2-Cul-01, 98.4 (1); 
N7-Cu2-N8, 78.8 (1); N6-Cu2-N8, 155.7 (2); N5-Cu2-N8, 102.4 (1); 
N6-Cu2-N7, 78.5 (1); N5-Cu2-N7, 177.7 (1); N5-Cu2-N6, 100.5 (1); 
Cul-N4-C37, 128.9 (3); Cu2-N5-C37, 126.5 (2). 

Supporting evidence for the involvement of the Cu-Im-Cu moiety 
in the macrocycle synthesis was obtained from a solution ESR 
study. The spectrum of a methanol solution of copper triflate and 
imidazole in a 1:1 ratio (at a 2.5 X 10"1 M concentration, cor­
responding to that used for the synthesis of 1) showed a broad 
resonance at g = 2.174 with features characteristic of a dipole-
dipole interaction. That such a phenomenon still existed after 
a 100-fold dilution indicates that aggregates are excluded; 
therefore, it can only be explained by the presence of a bridged 
dinuclear species, most likely the imidazolate, existing in solution 
prior to the formation of the macrocycle. 

In the structure16 of 1-3THF (Figure 1), each copper atom 
possesses a square planar N4 environment forming a dinuclear 
unit through a bridged imidazolate. The axial positions to the 
N4 planes are occupied for one copper by a ligand H2O (CuI-Ol 
= 2.248 (2) A) while, for the other copper, two oxygen atoms of 
two triflate anions lie in a trans position, one weakly bound 
(Cu2-02 = 2.442 (3) A and the other (not represented) further 
away (Cu2—09 = 2.724 (4) A). The benzene and imidazolate 
rings are nearly coplanar whereas the two pyridine rings are 
oriented at an angle of 123.0 (2)°. This angle as well as a Cu-Cu 
separation of 5.92 A suggests that a tetrahedral intermediate such 
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All the data were collected on a Philips PW 1100/16 diffractometer at -100 
0C equipped with a low-temperature self-built device. Of the 8947 unique 
data collected with Cu Ka radiation (X = 1.5418 A), the 6838 with/> 3<r(/) 
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as (H2N)2C(C)2 could replace imidazolate as a bridging ligand 
in catalytic hydrolysis. 

The electronic spectrum of 1 in propylene carbonate displayed 
absorption bands at 694 (e = 270 M"1 cm"1) and 294 nm (e = 
8700 M"1 cm"1), which arise respectively from a d-d transition 
and from an L - • Cu" charge-transfer band. More importantly, 
the ESR spectrum of 1 (solid state, room temperature) provided 
clear evidence for an antiferromagnetic exchange interaction: this 
is supported by the detectable AM = 2 transition at g = 4.29 as 
already observed in other Cu2(M-Im) complexes.17 The electro­
chemical studies in propylene carbonate showesj a quasi-reversible 
reduction corresponding to the transfer of two electrons at E^2 

= -435 mV (scan rate, 50 mV s"') confirming, as already sug­
gested,18 that the size of the macrocycle is of importance for the 
observation of a single reduction process Cu2" -» Cu2

1. 
The free ligand L could be obtained in 72% yield by extraction 

of the metal ions (copper and alternatively nickel) from complex 
1 with EDTA.19 Complete characterization of L has been carried 
out by the usual methods (microanalysis, IR, FAB+-MS), and 
strong evidence has been obtained for the presence of both un-
protonated and monoprotonated forms in a 3:2 ratio, as supported 
by the 1H NMR analysis in CD2Cl2. As a tetraimine, L is unstable 
for extended periods in aqueous solution but may be handled as 
a solid or in nonaqueous solvents. Furthermore, complex 1 could 
be regenerated by addition of 2 equiv of Cu2+ to L in the presence 
of ImH (1 equiv). 

In summary, a novel method of templated macrocyclization 
has been discovered leading to both dicopper and dinickel com­
plexes which should be well-constructed for catalysis of urea 
hydrolysis and related substrates. Studies directed toward this 
goal are in progress. 
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